P-adic numbers visualization

Reading time ~2 minutes

What are p-adic numbers ?

P-adic and rationnal numbers

P-adic numbers are an original way to look at the (limit of sequence of) elements in .

More precisely, just like represents the limits of Cauchy sequences in endowed with the distance : , represents the limits of Cauchy sequences in with another distance : , where is detailed below.

P-adic valuations

For a prime number, define as the exponent of in the decomposition of in a product of prime factors. Also define

Then is a distance on integers.

In with the distance , note that the sequence converges towards .

Why they matter

Various results can be proved using p-adic numbers. I discovered them in “Introduction to number theory”, where they are used to determine whether an ellipse has rationnal points. They also enable to give a meaning to


The idea

A p-adic number can be written where the sum might be infinite. Though it seems weird because the terms are growing, note that the sequence actually tends to really quickly in

A traditionnal way to picture p-adic numbers is with co-centric circles, like below:

Representation of p-adic integers

All the credit goes to: Heiko Knopse for this illustration, more are available on his site

My idea is to take this idea to the limit. Formally, for , the complex number is associated to .

is a parameter between and used to ensure convergence.


Representing some integers

Some integers in zp


Convergence of a sequence in zp


An interesting property is that . It is illustrated below. As you can see, addition in the p-addic representation shifts numbers to the right.

Convergence of a sequence in zp


from cmath import *

class PAddicRepresenter:

    def __init__(self, p, l, output_length=30):
        self._p = p
        self._l = l
        self._output_length = output_length

    def to_plane(self, n):
        l = self._l
        p = self._p
        decomposed_int = self._completed_int_to_base(n)
        complex_coordinates = sum(
            [l ** n * exp(1j * c * 2 * pi / p) for n, c in enumerate(decomposed_int)])
        return complex_coordinates.real, complex_coordinates.imag

    def transform_sample(self, ns):
        xs, ys = [], []

        for n in ns:
            x, y = self.to_plane(n)

        return xs, ys

    def _int_to_base(self, n):
        p = self._p
        i = 0
        decomposition = []
        while n > 0:
            residual = n % p
            n = (n - residual) / p
        return decomposition

    def _completed_int_to_base(self, n):
        decomposed_int = self._int_to_base(n)
        return decomposed_int + [0] * (self._output_length - len(decomposed_int))

The first visualization being obtaining using the following:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8,8)
from PAddicRepresenter import PAddicRepresenter

n_points = 3**10
p = 3
small_sample_size = 55
l = 0.45

par = PAddicRepresenter(p, l)

xs, ys = par.transform_sample(range(n_points))

fig, ax = plt.subplots()

ax.hist2d(xs, ys, bins = 500, cmap = 'Greys')

ax.scatter(xs[0:small_sample_size], ys[0:small_sample_size], c='black')
for i in range(small_sample_size):
    ax.annotate(str(i), (xs[i] - 0.03 , ys[i] + 0.05))

Learning more

For those interested in number theory, I strongly recommend :

Number Theory 1: Fermat’s Dream by Kazuya Kato, Nobushige Kurokawa and Takeshi Saito

Number Theory 2: Introduction to Class Field Theory by the same authors which requires more knowledge in algebra and group theory.

Extract trees from a random forest in python

You may need to extract trees from a classifier for various reasons. In my case, I thought that the feature of [xgboost](https://xgboost....… Continue reading

An introduction to model stacking

Published on January 03, 2021

OCaml Bigarray vs array

Published on November 01, 2020